
Procedural Game Map Generation using Multi-leveled Cellular
Automata by Machine learning

Zhixuan Wu†

College of Arts and Science
New York University

New York, NY, United States
† Corresponding author

zw1887@nyu.edu

Yuwei Mao
Department of Performance

University of California, Santa Cruz
Santa Cruz, CA, United States
maoyuwei99@gmail.com

Qiyu Li
York School

Monterey, CA, United States
lik2022@york.org

Abstract
The concept of Procedural Content Generation (PCG) has been
intensively applied in the game industry for its capability of
producing infinite game maps without any human effort.
Innumerable games, such as Minecraft, Terraria, and No Man’s
Sky, successfully employed this technique to create
unpredictable yet playful gaming experiences. While
randomness is essential to adding engaging elements to a game,
complete randomness may hurt the outcome of map
generations by making a chaotic scene. To address this issue,
this paper introduces an effective way of “tweaking” the
randomness to generate flexible, endless, natural-looking game
maps by machine learning.

CCS CONCEPTS

Applied computing • Life and medical sciences • Bioinformatics

Keywords
Cellular Automata, Procedural Content Generation, Cave
Generation Algorithm, Roguelike Game, medical deep learning

1. Introduction
Games, especially rogue-like games, require a large number of
levels and maps to create an engaging, story-telling play
experience. While the maps indeed can be created manually,
these “man-made” levels can be expensive in 2 ways: first, for
games that need an endless supply of level designs, creating
maps for every single level takes a lot of time and energy;
second, the large number of maps that are pre-designed and
loaded into the game take up tons of memory footprint.
Procedural Content Generation avoids these two problems by
automatically generating maps on the fly so that no static
storage is needed and no two maps are the same. Through
handling the lengthy, repetitive work using an effective
algorithm, game developers can instead focus on more critical
design problems and output more intriguing games. Therefore,
an algorithm that is able to generate infinite and reliable

environments can cast a direct influence on the quality of the
entire game.

While there has already been a lot of studies and
interesting algorithms developed for procedural map
generation such as the Tunneling algorithm and Drunkard’s
Walk, this work focuses on a way of producing customizable
maps with rich elements and natural twists and curves. In short,
this paper will introduce a reliable, flexible algorithm based on
multi-leveled cellular automata and adjusted probability to
generate infinite, realistic maps enriched by various landforms
such as lakes, islands, forests, and deserts.

2. Background

2.1 Roguelike Games
Roguelike games are games with strong focuses on intricate
content and replayability. This genre of game is usually
characterized by pixel art visual style and endless replayable
levels. More importantly, randomization plays an important
role in replayability. One of the characteristics defined by Erdi
Igzi from Charles University is that “Major parts of the world in
which the game is played are generated using a random
maze/dungeon generation algorithm. Thus, every game is
different than the others, and this feature makes the level
playable many times [1].” The concept described above is called
procedural generation, and it provides a different experience
each time playing the game regardless of the simplex style.

2.2 Cellular automata: Game of life
John Conway’s game of life is a type of cellular automata in
which there are multiple alive and dead cells. According to
Alexander Gellel and Penny Sweetser in their paper A Hybrid
Approach to Procedural Generation of Roguelike Video Game
Levels, “cellular automata (CA) are spatial, discrete time models
represented on a uniform grid, which can be used to model
different aspects of game environments [2].” The rules are as
follows:

mailto:maoyuwei99@gmail.com


1. Survivals. Every counter with two or three
neighboring counters survives for the next
generation.

2. Deaths. Each counter with four or more
neighbors dies (is removed) from overpopulation.
Every counter with one neighbor or none dies
from isolation.

3. Births. Each empty cell adjacent to exactly
three neighbors--no more, no fewer--is a birth
cell. A counter is placed on it at the next move
[3].

A simple pattern will be created according to the rules. The
pattern also changes after rerunning the automation each
time.

To further exemplify this concept, this work included a
simple simulation of the Game of Life with python. The first
randomized map is shown in Figure 1. Figure 2 shows the state
of the cells after ten rounds of automation following these
same rules. Overall, this is a conceptual idea for the generation
of game maps.

Figure 1 Initial 2D grids filled by random values

Figure 2 The automaton map after ten life stages

2.3 Cave Generation Algorithm
The given rules of Conway’s game of life are not sufficient to
create an inner connected map for potential caves or islands. In
Michael Cook’s article Generate Random Cave Levels Using
Cellular Automata, he presents an alternative set of rules that
avoids the overly sporadic pattern of automata generations and
makes actual map-like looking scenes. Instead of having the
exact number of neighbors dead or alive to change the state of
the cell, a birth limit and a death limit are created for the rule of
automation:

The rules are simpler than the Game of Life - this
program has two special variables, one for birthing
dead cells (birthLimit), and one for killing live cells
(deathLimit). If living cells are surrounded by less
than deathLimit cells they die, and if dead cells are
near at least birthLimit cells they become alive [4].

Figure 3 and 4 displays the visualization results of the new set
of rules. Through observation, the initial map in Figure 3 is very
similar to the one in Figure 1. But after running the cave
generation algorithm with the limits, the result in Figure 4 is
very different from the result in Figure 2 and is more suitable to
be the basis of a game map.

Figure 3 Initial map for cave generation

Figure 4 After 3 rounds of automations

2.4 Procedural Generation
In general, the process that generates data with algorithms
instead of generating them manually is called procedural
generation.

“Procedural generation is usually used to create content
for video games or animated movies, such as landscapes, 3D
objects, character designs, animations, or non-player character
dialogue. One famous example of this is the planets generated
in “No Man’s Sky.” In this game, players can explore 18
quintillion (18,000,000,000,000, -000,000) unique planets and
moons, which were generated algorithmically by computers [5].”
The example of “No Man’s Sky [6]'' better shows the
importance of procedural generation as it is impossible for
human beings to generate such a large amount of data
manually. It brings infinite possibilities to a game, especially
Roguelike games that rely on this infinite possibility.

In addition to the possibilities, the data generated cannot
be completely random. Shown by the difference between
Figure 2 and Figure 4, specific rules of randomization would



affect the result of procedural generation and the experience of
gameplay. This problem will be discussed further in the paper.

3. Methodology

3.1 Rules and Representation
The simple rules of Cellular Automata have the desirable nature
of generating infinite and randomized patterns. However, as
the patterns are too sporadic to be considered as maps, this
research project adopts the adjustment made by Michael Cook
in his article Generate Random Cave Levels Using Cellular
Automata as introduced in 2.3.

The calculation of the map is performed on a set of 2D
arrays with different numbers as markers representing
different landforms. To evaluate the final result, visualizations
of the map are generated using the Pygame library.

3.2 Multi-leveled Cellular Automata Approach
The Cave Generation Algorithm and Cellular Automata enable
us to generate ocean and island-like shapes with natural curves
and turns. Combining with adjusted parameters, the algorithm
can form the first layer of the game map: sea and island. To
create a more engaging and playable map, however, we need
to enrich the content with more elements. This is where multi-
leveled cellular automata come into place.

Consider the maps in real life, or clear high angle shots of
islands, the elements that composed the whole picture are far
more than simple island-shaped terrains and water - there are
mountains and forests, freshwater lakes inside the ocean-
surrounded islands, dryer and sandy lands that are of brighter
color than the brownish soil, etc.

One approach to creating such natural maps with rich
elements is through procedurally generating levels of the
landscape. For instance, after the generation of the sea, the
islands start to form; after the formation of islands, trees grow
and mountains arise; and after mountains and forests, deserts
and beaches appear. Figure 5 and 6 illustrates a high-level view
of this multi-leveled structure.

Figure 5 Final Completed Example Map

Figure 6 Different Levels of Multi-leveled Cellular Automata
For different landscapes, of course, there are different limits

and constraints: for example, mountains cannot appear on top
of water alone, deserts seldomly appear in a forest, beaches
more frequently appear by the ocean side than at the inner
island, etc. Section 3.3 will introduce in detail how the
algorithm calibrates these features and constraints and finally
output a realistic game map.

3.3 Developing Different Landscape Layers

3.3.1 Setup
To start with, a map populated by random values of 1 and 0
with a set probability needs to be generated. This set
probability is called “Probability of Island Generation (PI)”. It
specifies the rate at which a map is filled by islands rather than
the ocean. For example, if PI = 70, then each cell initially has a
probability of 70% of becoming an island cell.

3.3.2 Sea and islands
Based on the random array generated in the last step, we
perform the rules of the Cave Generation Algorithm on each
cell. The set of rules will in turn trigger a higher probability for
living cells that are connected to stay alive, and deceased cells
in the middle of other dead cells remain dead. In the following
pseudocode, 1 represents the island, and 0 represents the
ocean.

island_simulation(map, death_limit, birth_limit):
for each cell in map:

count = number of alive neighbors
if cell = 1:

return (count < death_limit) ? 0 : 1
else return (count > birth_limit) ? 1 : 0

3.3.3 Mountains and Forests
Mountains and Forests are essential to simulate realistic
landscapes. Nevertheless, we want to limit their generation
such that they only appear in lands and never in the water.
Hence, for this level, the algorithm needs to first ensure that
the generation only takes place on top of islands.

One way to set this constraint is by distinguishing the
markers generated in the previous level. With that added, the



algorithm generates mountain cells determined by another set
of death_limit and birth_limit parameters so that the mountain
cells only appear if the area is already occupied by island cells.

Figure 7 The Sea and Islands Level

Figure 8 Map with the Mountain and Forests Level added

3.3.4 Sand and Desert
Sand and desert are not allowed to birth alone in the middle of
the ocean. In addition to that, the rules for generating sand and
desert are slightly different - mountains and forests, in our
common sense, may appear anywhere on an island. However,
this is not the case for deserts. Normally, the probability of
seeing sands near the sea is higher than in the interior of the
island. This is because beaches often appear near the sea and
seldomly show at the center of a forest.

sand_simulation(map, desert_rate):
for each cell in map:

r = random number between [1, 100]
rate = desert_rate

If (i, j) is near ocean:
rate *= 2

if r <= rate & cell is island not mountain:
calculate surroundings and mark cell

4. Experiments
Experimentation and visual comparisons are required for
concluding the most appropriate combination of different
parameters. As the property and landscape settings of games
vary, the desired resulting maps can also be extremely different.
This part will introduce the visualization results of adjusting
parameters for birth limit and death limit(B&D), the number of
automata life stages(N), and generation probability for
mountains, islands, and deserts (PI, PM, PD).

Figure 9 - 13 shows the visualization results of different
parameters after each experiment.

4.1 Birth Limit and Death Limit (B&D)
Birth Limit and Death Limit influence the amount of area that is
occupied by islands. They together limit the number of alive
neighbors one cell is allowed to have for it to remain alive. For
instance, according to the rules of the Cave Generation
Algorithm, when B = 4 and D = 3, a dead cell only becomes alive
if it is surrounded by 4 or more cells, and a living cell is dead if it
is surrounded by less than 3 cells.

In the array representation of a map, a cell is typically
surrounded by 8 neighbors with exception of border cases (5
neighbors) and corner cases (3 neighbors). Hence, B and D are
restricted to numbers equal to or less than 8 and greater than 1
in the first place.

Nevertheless, as the chance in which a cell has all 8
neighbors alive is only 0.4%, setting B to 8 severely deducts the
possibility for cells to birth, while setting D to 8 makes all cells
almost doomed to die after the first iteration. And vice versa
when B & D each is set to 1 - the cells will all be alive then the
landscape will flood the whole picture.

Therefore, for a map to contain a proper amount of
landscapes other than water, one should adjust B & D to an
intermediate number between 2 to 7. Below is a form that
shows the visualization of different Birth Limits and Death
Limits applied.

Figure 9 Visual Result of Different B&D Parameters
From the visualization above, B = 4 and D = 3 show a

desirable outcome for map generation. One can also adjust D to
lower if they need a map filled with more land than water.

4.2 Number of automata life stages(N)
The number of automata life stages(N) determines how
sporadic the result is. When N is lower, the islands appear to be



small pieces that are yet to be connected. When N is higher, the
initially small islands gather together to form larger entities.
However, as the set of rules defined for the island level stops
permuting after several iterations, there is no need to set N to
an extremely large number.

Figure 10 Visual Result of Different Number of Automata Life
Stage (N)

The above visualization shows that the shapes of levels
become rounder and squarer after increasing the parameter
N. 6-10 is a good range, but the most appropriate value
depends upon different game contexts.

4.3 Probability(P)
The generation probability of different landscapes is essential
to creating varied game experiences. Depending on the game
contexts, lower or higher probabilities can be applied to create
desirable outcomes. These parameters altogether assist with
creating flexible game maps.

4.3.1 Probability of Island Generation (PI)
The probability of island generation (PI) determines the number
of islands a map contains. The larger PI is, the more area on the
map is filled by lands. Below are several examples of different
PI parameters being applied. One can adjust this variable to
tweak the land-sea proportion of the results.

Figure 11 Visual Result of Different Probability of Island (PI)

4.3.2 Probability of Mountain Generation (PM)
The probability of mountain generation (PM) determines the
proportion of mountains that are on the islands. Similar to PI,
the larger PM is, the more the mountains appear in the final
result.

Figure 12 Visual Result of Different Probability of Mountain
(PM)

4.3.3 Probability of Desert Generation (PD)
The probability of desert generation (PD) sets how many areas
of the islands are occupied by sands. Below shows several
outcomes of different PD parameters.

Figure 13 Visual Result of Different Probability of Desert (PD)
The visualization shows that the larger PD parameters
correspond to larger areas of drylands.

5. Evaluation



The final result of the multi-leveled cellular automata approach
shows the potential to output natural game scenes with
randomness and replayability. Moreover, the maps generated
using combinations of different parameters display highly
varied visual appearances and land features. Although there are
a lot of existing algorithms focusing on the random generation
of game environments, this algorithm further presents more
customizable and elastic adjustments for procedural map
generations.

6. Conclusion
This paper proposes a reliable way of generating randomized
game maps enriched by various landforms. The visualization
results of this algorithm prove to be highly flexible, and
reusable for different types of game contexts. One can
procedurally generate highly varied game environments by
adjusting different parameters and generation probabilities.

For now, there are two major next steps to look into. First,
we will continue to polish the probability and generation rate
mechanics. And second, a 3D implementation of this algorithm
is highly possible and worthwhile to be examined. In addition to
that, playtesting of the maps is also needed to further evaluate
the viability of the algorithm.

REFERENCES
[1] Izgi, E. (2018) Framework for Roguelike Video Games Development.

[2] Gellel, A., Sweetser, P. (2020) A Hybrid Approach to Procedural Generation of
Roguelike Video Game Levels.

[3] Gardner, M. (1970) The fantastic combinations of John Conway's new solitaire
game "life". Scientific American, 233: 120–123.

[4] Cook, M. (2013) Generate random cave levels using cellular automata.
https://gamedevelopment.tutsplus.com/tutorials/generate-random-cave-
levels-using-cellular-automata--gamedev-9664.

[5] Brummelen, J. V., Chen, B. (n.d.) Procedural generation: creating 3D worlds
with deep learning.
http://www.mit.edu/~jessicav/6.S198/Blog_Post/ProceduralGeneration.html.

[6] Hello Game. (2016) No Man’s Sky. https://www.nomanssky.com


